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1. Abstract 11 

We test the hypothesis that accelerating moment release (AMR) is a precursor to large 12 

earthquakes, using data from California, Nevada, and Sumatra.  Spurious cases of AMR 13 

can arise from data-fitting because the time period, area, and sometimes magnitude range 14 

analyzed before each mainshock are often optimized to produce the strongest AMR 15 

signal.  Optimizing the search criteria can identify apparent AMR even if no robust signal 16 

exists.    For both 1950-2006 California-Nevada M 6.5 earthquakes and the 2004 M9.3 17 

Sumatra earthquake we can find two contradictory patterns in the pre-mainshock 18 

earthquakes by data-fitting: AMR and decelerating moment release. We compare the 19 

apparent AMR found in the real data to the apparent AMR found in four types of 20 

synthetic catalogs with no inherent AMR.   When realistic spatiotemporal clustering is 21 

included in the simulations, similar AMR signals are found by data-fitting in both the real 22 

and synthetic data sets even though the synthetic data sets contain no real AMR.  These 23 

tests demonstrate that apparent AMR arises from a combination of data-fitting and 24 

normal foreshock and aftershock activity.  Therefore, AMR has no more predictive power 25 

than existing forecasts that more directly and optimally utilize earthquake clustering.  In 26 

principle, data-fitting artifacts could be avoided if the free parameters were determined 27 

from scaling relationships between the duration and spatial extent of the AMR pattern 28 

and the magnitude of the earthquake that follows it.  However, we demonstrate that 29 

previously proposed scaling relationships are unstable, statistical artifacts caused by the 30 

use of a minimum magnitude for the earthquake catalog that scales with the mainshock 31 

magnitude.  Some recent AMR studies have used spatial regions based on hypothetical 32 

stress loading patterns, rather than circles, to select the data.  We show that previous tests 33 
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were biased and that unbiased tests do not find this change to the method to be an 34 

improvement.  The use of declustered catalogs has also been proposed to eliminate the 35 

effect of clustering but we demonstrate that this does not increase the statistical 36 

significance of AMR.  Given the ease with which data-fitting can find desired patterns in 37 

seismicity, future studies of AMR-like observations must include complete tests against 38 

synthetic catalogs that include realistic spatiotemporal clustering. 39 

 40 

41 
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2. Introduction 41 

 42 

This study examines whether or not Accelerating Moment Release [e.g. Bowman 43 

et al., 1998; and see references in Mignan et al., 2006a] is a statistically significant 44 

precursor to large earthquakes in California and Nevada.  While a number of studies of 45 

the Accelerating Moment Release (AMR) hypothesis have reported positive results, our 46 

study is motivated by concerns that the existence of a number of free parameters in this 47 

hypothesis could lead to false positive results if the effects of data-fitting are not 48 

considered carefully. In particular, Bowman et al. [1998] adjust the region and time that 49 

they inspect before each mainshock to optimize AMR, although theoretically, if a gradual 50 

elastic build up of strain is the true cause of the acceleration, as claimed by Bowman et al. 51 

[1998],  the AMR signal should not be very sensitive to the space and time window. 52 

 Searching seismicity catalogs for precursors to large earthquakes has been an 53 

active avenue of research for many years.  This course of research is reasonable because 54 

the obvious temporal and spatial clustering of earthquakes demonstrates that events 55 

interact with each other.  This line of inquiry is also appealing because earthquake 56 

catalogs cover the entire globe, and, although their quality varies as both a function of 57 

space and time, these catalogs are generally easy to obtain.  However, it should be noted 58 

that seismicity represents only part of the deformation processes involved in plate 59 

tectonics and seismogenesis and thus provides only a limited view into possible 60 

precursory behavior.  Proposed seismicity precursors range from simple changes in the 61 

rate of seismicity such as quiescence and activation, to those that include spatial patterns 62 

such as Mogi-doughnuts [for overviews see Kanamori, 1981; Reyners, 1981], to complex 63 
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systems such as M8 [Keilis-Borok and Kossobokov, 1990] and Pattern Informatics 64 

[Tiampo et al., 2006]. 65 

Accelerating Moment Release is a more sophisticated version of the activation 66 

hypothesis based on the concept that earthquakes are an example of a critical point 67 

phenomena.  According to the activation hypothesis one expects a precursory increase in 68 

the rate of earthquakes before a large event.  In the AMR hypothesis as formalized by 69 

Bowman et al. [1998], the rate of seismicity increases such that the cumulative Benioff 70 

strain (square root of the seismic moment or energy) [Benioff, 1951] follows a power-law 71 

function until the time of an eventual mainshock.  Thus it falls under the broad category 72 

of seismicity rate changes.  Reasenberg and Matthews [1988] looked for rate changes 73 

before 32 M 5.3 earthquakes in central California (from 1974 to 1986) and Japan (from 74 

1926 to 1984).  If the statistics of each of the 32 sequences they studied are considered 75 

separately, then they found statistically significant (at the 90% confidence level) 76 

activation before 4 of the sequences, statistically significant quiesence before 3 of the 77 

sequences, and no significant rate changes before the remaining 25 sequences.  Thus if 78 

each sequence were considered as an individual case study, 7 of them could contribute to 79 

the literature on either activation or quiescence.  However, taken as an ensemble the 80 

result is clearly that there is no consistent, precusory pattern of seismicity rate changes 81 

before earthquakes.  The lesson of Matthews and Reasenberg [1988] is clear: case studies 82 

are not sufficient and we must test such hypotheses by looking at an entire catalog of 83 

data. 84 

Given the results of Matthews and Reasenberg [1988] it is reasonable to ask why 85 

one should continue to study the possibility that there are precursory rate changes before 86 
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large earthquakes.  There are two differences between AMR and the method used by 87 

Matthews and Reasenberg.  First, AMR quantifies the seismicity by the cumulative 88 

Benioff-strain while Matthews and Reasenberg used the number of earthquakes over a 89 

given magnitude.  This difference is important if the magnitude-frequency relationship 90 

has temporal variations so that the count of earthquakes over a given magnitude is not 91 

proportional to the Benioff-strain.  Temporal variations in the magnitude-frequency 92 

relationship are certainly possible and some have argued that there are precursory 93 

variations in the b-value from the Gutenberg-Richter relationship [Reyners, 1981].  The 94 

second difference is that AMR hypothesizes a gradual change in the seismicity while 95 

Matthews and Reasenberg used a method optimized for sudden changes in the rate.  96 

While the method of Matthews and Reasenberg should detect clear examples of AMR, it 97 

is possible that it could miss some borderline cases.  Thus, it is reasonable to do a study 98 

specifically of the AMR hypothesis. 99 

Our study will focus on the AMR hypothesis as presented by Bowman et al. 100 

[1998].  This frequently cited paper is an important underpinning to current research 101 

because it clearly formalized the AMR concept into a testable hypothesis and introduced 102 

tests to estimate the statistical significance of the results.  These tests used synthetic 103 

seismicity catalogs to determine how often AMR could be observed by random chance.  104 

Thus, Bowman et al. [1998] was an important step forward.  Our study is motivated by 105 

concerns that their tests may have underestimated the importance of data-fitting by 106 

treating each mainshock in isolation (rather than considering a complete catalog of 107 

events) and lacked sufficient statistical power because too few sequences were analyzed. 108 
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Also, Bowman et al. [1998] tested their results using synthetic catalogs that did not 109 

include spatiotemporal clustering.  110 

To test the AMR hypothesis, we first investigate the effects of data-fitting by 111 

searching for both AMR and decelerating moment release (DMR) in both the California-112 

Nevada catalog and before the 2004 M9.3 Sumatra-Andaman Islands earthquake.  113 

Second, we compare the frequency of AMR before large earthquakes in the actual 114 

California-Nevada earthquake catalog with results obtained using synthetic seismicity 115 

catalogs that contain no AMR.  Multiple methods will be used to synthesize these 116 

catalogs to ensure that the results are robust and not dependent on details of how the 117 

synthetic catalog is produced.  Third, we test the stability of scaling relationships between 118 

the duration and spatial extent of apparent AMR patterns and the magnitude of the 119 

earthquakes that follow. 120 

Our tests are much more rigorous than the tests in Bowman et al. [1998] and other 121 

AMR literature in several ways. Most importantly, we analyze the real data and 122 

synthetics identically, which has not been done in any prior study of AMR. The data and 123 

synthetics must be treated exactly the same, so that any differences in the observed AMR 124 

behavior are clearly differences in the catalogs rather than differences in the analysis. In 125 

order to make sure that the analysis is done uniformly, we use clearly defined search 126 

parameters and avoid ad-hoc decisions when determining the amount of AMR in the data 127 

and synthetics.  We also compare AMR in the real catalogs with AMR in synthetic 128 

catalogs containing realistic spatial-temporal clustering and multiple mainshocks.  129 

Synthetics used in prior work have considered only one mainshock, and have not 130 

included earthquake clustering.   131 
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In the years since Bowman et al. [1998] was published, various authors have 132 

proposed changes to the AMR method.  Thus, if we focus only on Bowman et al. [1998] 133 

our conclusions could be outdated.  For instance, Bowman et al. [1998] searched for 134 

AMR within circular regions around the large earthquakes.  Bowman and King [2001] 135 

introduced search regions based on the Coulomb stress transfer pattern from a backslip 136 

model of the mainshock, based on the hypothesis that AMR would occur in the regions 137 

that are being loaded by the deformation that loads the mainshock fault plane.  The utility 138 

of this hypothesis was tested using California seismicity by Mignan et al. [2006a] and we 139 

will further examine this hypothesis. Mignan et al. [2006a] also used declustered 140 

earthquake catalogs to try to reduce the effect of clustering and we will test whether or 141 

not this affects the statistical significance of the results.  By doing so we ensure that our 142 

conclusions are applicable to the current state of the art. 143 

 144 

3.  Methods of Measuring AMR and Statistical Significance: 145 

 146 

Bowman et al. [1998] formalized the search for AMR by developing a measure of 147 

whether the cumulative Benioff strain before an earthquake is better fit by a power-law 148 

function or a linear function with respect to time (Figure 1).  The cumulative Benioff 149 

strain, (t), is determined for a given radius around, and during a time period before, a 150 

mainshock: 151 

(t) = Ei

i=1

N (t )

(t)1/ 2        (1) 152 
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where Ei is the energy of the ith event at time t and N(t) is the number of events up to 153 

time t.  We assume that log10(E) is proportional to 1.5 times the magnitude (e.g. 154 

Kanamori and Anderson [1975]) but our results do not depend on the specific empirical 155 

relationship. 156 

Two temporal functions are then fit to the cumulative Benioff strain curve: a linear 157 

function and a power-law function.  The power-law function is: 158 

(t) = A + B(tc t)m     (2) 159 

where tC is the time of the mainshock, B is negative, and 0 < m < 1 for the power-law to 160 

be concave upward.  To fit equation (2) to equation (1), the parameter A is set to the 161 

cumulative Benioff strain at the time of, and including, the mainshock.  162 

Finally, to produce a measure of the degree of AMR before a mainshock, Bowman et 163 

al. [1998] introduced the parameter C: 164 

C =
power law fit root - mean - square error

linear fit root - mean - square error
   (3) 165 

If the power law fits the observed cumulative Benioff strain better than the linear 166 

function, C will be less than 1. Bowman et al. [1998] require m  0.8 so that the power-167 

law function will not approximate a linear function.  If the power-law function does not 168 

fit the data as well as the linear function, C will be greater than 1. 169 

The C-value depends on the earthquakes used to determine (t) and the earthquakes 170 

used depend on the size of the region selected around the mainshock, the time period 171 

before the mainshock, the magnitude range used to select the data, and the minimum 172 

number of earthquakes required to define a pattern.  The magnitude range used by 173 
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Bowman et al. [1998] is 2 units smaller than the mainshock except when they concluded 174 

that the catalog was complete to a lower level.  Because such ad-hoc decisions cannot be 175 

automated we will use the magnitude range of 2 units smaller than the mainshock.  The 176 

region around the mainshock is determined by adjusting the radius of the region until the 177 

minimum C value is obtained, although Bowman et al. [1998] do not use a uniform 178 

search criteria.  Bowman et al. [1998] do not discuss how the time period used before 179 

each mainshock is chosen, but since the amount of time used before each mainshock 180 

varies, presumably these time periods have also been optimized to maximize AMR.  We 181 

want to essentially follow the protocol of Bowman et al. [1998] but wish to make the 182 

optimization procedure more uniform so that our results are readily reproducible.  We 183 

find that we get very similar results to those of Bowman et al. [1998] if we use an 184 

optimization method of varying the radius of the region around the mainshock from 20 185 

km to 1000 km in steps of 20 km, and varying the start time before the mainshock from 186 

the beginning of the catalog to the year before the mainshock in steps of 1 year. 187 

Another issue is whether C varies with the minimum number of earthquakes required 188 

for calculating an AMR solution (Nmin).  Bowman et al. [1998] note that acceleration 189 

cannot be measured with fewer than 4 earthquakes and set Nmin = 4.  Mignan et al. 190 

[2006a] use Nmin = 5.  Bowman (personal communication) has suggested, however, that 191 

spuriously low C values might be calculated when data sets of earthquakes are very small 192 

and has suggested Nmin = 10.  We measure how C varies in the real catalog when we use 193 

Nmin values of 4, 6, 8, and 10.  We observe a small increase in mean C when Nmin is 194 

increased from 4 to 8.  The values for Nmin = 8 and Nmin = 10 are the same, but with a 195 

larger sample we might observe a difference.  Thus to be conservative we do all of our 196 
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comparisons between the synthetics and real data using both Nmin =4, in accordance with 197 

Bowman et al. [1998], and Nmin = 10, in accordance with Bowman’s later advice. 198 

Bowman et al. [1998] define a successful AMR detection if C 0.7, while other studies 199 

[e.g. Mignan et al., 2006b] use different threshold values of C.  When we do our tests we 200 

look at the full distribution of C values for a catalog of mainshocks, so that we are 201 

sensitive to the full range of apparent AMR behavior.   202 

We present the distributions of C-values for the real and synthetic data as cumulative 203 

density functions (CDFs).  If the real catalog exhibits more distinct accelerations than the 204 

synthetic catalogs, the distribution for the real data should be larger for smaller values of 205 

C than the distribution for the synthetics.   Then, in the plots, the CDF curve for the real 206 

data should lie above and to the left of the CDF curve for the synthetics.  To visually 207 

estimate the uncertainty in these CDFs, we also plot the 95% confidence regions of the 208 

cumulative density functions as determined by bootstrap resampling of the distributions.  209 

The bootstrap resampling assumes that the individual C-values are independent, although 210 

in reality they are not because the data-selection regions for multiple mainshocks can 211 

overlap.  Thus, the bootstrap resampling slightly underestimates the true variability in the 212 

CDFs and thus this visual representation may make the distributions of the real and 213 

synthetic data look more distinct than they actually are. 214 

Finally, we use a Kolmogorov-Smirnov (K-S) test to test the null hypothesis that the 215 

distribution of C for the real mainshocks is not biased toward lower values of C than the 216 

distribution of C for the synthetic mainshocks.  Because the distribution of C for the 217 

synthetic mainshocks is an observation with uncertainty, this K-S test is done as a two-218 

sided test.  Because we test whether the real distribution is biased in one direction from 219 
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the synthetic distribution it is a one-tailed test.  We present the results of this test as the 220 

confidence that we can reject the null hypothesis.  When this confidence is over 95% we 221 

accept that more AMR is present in the real data than in the synthetic catalogs.  Note that 222 

the K-S test also assumes that the individual C-values are independent and thus also 223 

slightly overestimates the statistical significance of AMR in the real data.  Therefore our 224 

tests are conservative with respect to falsely rejecting the AMR hypothesis and could 225 

accept it even when it should be rejected. 226 

 227 

4. Data 228 

When we search for AMR before real earthquakes we use the ANSS catalog for 229 

California and Nevada, available from the Northern California Earthquake Data Center 230 

(www.ncedc.org/anss, last accessed on March 27, 2006) for the time period from 1950 to 231 

2005.  We define the California and Nevada region as from 31.5° to 42° N and 114° to 232 

124° W (Figure 2). 233 

Bowman et al. [1998] studied the 8 M 6.5 earthquakes occurring after 1950 in 234 

California as well as the 1986 ML 5.6 Palm Springs earthquake and 3 smaller and larger 235 

global earthquakes. This is a very small data set with which to do statistical tests since, as 236 

we will show later, it is so easy to find apparent AMR signals in random data sets.  237 

Bowman et al. [1998] only used mainshocks in California, although Nevada was part of 238 

their study region and they included Nevada seismicity in their searches for AMR.  No 239 

reason is given for the lack of Nevada mainshocks, so we add in mainshocks located in 240 

Nevada.  A number of papers have claimed to observe AMR world-wide, and the smaller 241 

Nevada earthquakes are already included in the analysis so there are no additional 242 
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concerns about catalog coverage or completeness, so including Nevada mainshocks 243 

should not influence our results.  This increases our sample size to 15 M 6.5 mainshocks, 244 

but this is still a very small sample. 245 

One important question is how large an earthquake has to be to qualify as a 246 

“mainshock”. We can increase the sample size by including smaller earthquakes as 247 

mainshocks, but only if we can demonstrate that the degree of acceleration before our 248 

new mainshocks matches what is seen before the M 6.5 events. When Bowman et al. 249 

[1998] analyze smaller events they caution that for smaller mainshocks the seismic 250 

acceleration might be obscured by stress redistribution from larger earthquakes. We 251 

evaluate whether it is possible to drop our mainshock magnitude to M 6 by calculating C 252 

values before 42 M 6 California/Nevada earthquakes.  After eliminating two mainshocks 253 

with C values that are >1, one of which was M>6.5, we measure the linear correlation 254 

coefficient between mainshock magnitude and C.  We find no significant correlation (the 255 

linear correlation coefficient, r
2
, is 0.02 for the 40 earthquakes), indicating that lowering 256 

the mainshock magnitude to M 6 does not change the AMR behavior of the sample.  257 

Using even smaller mainshocks could improve our statistics further but would require us 258 

to use earthquakes smaller than M 4 to search for the AMR, which would dip below the 259 

magnitude completeness threshold of the 1950-2005 catalog. 260 

The final step in our data selection is that we limit our entire earthquake catalog to be 261 

post-1950.  Bowman et al. [1998] also use primarily post-1950 data, but for the 1952 262 

Kern County and 1989 Loma Prieta earthquakes they go back to 1910 to search for 263 

acceleration.  Bowman et al. [1998] do note that this can be problematic, as one expects 264 

to see apparent seismicity rate accelerations from 1910-1949 due to improved detection 265 
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of earthquakes.  Routine and consistent magnitude determination began in Southern 266 

California in 1932 and in Northern California in 1948 [Uhrhammer et al., 1996].  267 

Bowman et al. [1998] attempt to correct for this by using only M 5.5 earthquakes from 268 

this period, but the statewide completeness magnitude was actually > M 6 [Toppozada 269 

and Branum, 2002], or as large as the mainshocks themselves, and magnitude errors were 270 

high.  Further significant improvements to the seismic network in the 1970s and late 271 

1990s may also create artificial acceleration in the catalog, but to a lesser extent since in 272 

many areas of the state the improvement affected detection of earthquakes smaller than 273 

the M 4 shocks that we use here.  274 

We find that starting the catalog in 1950 rather than 1910 does not bias our results 275 

against the AMR hypothesis.  AMR can be found before the Loma Prieta earthquake 276 

without going back to 1950.  For the 1952 Kern County earthquake it is true that a low C 277 

value cannot be found using only post-1950 data.  If true acceleration was occurring 278 

before this earthquake it seems odd that it should not be apparent in the two years 279 

immediately preceding the mainshock.  Nonetheless we find that we can simply remove 280 

the Kern County earthquake from the data base without affecting our statistical results. 281 

We also note that extending the catalog back in time for some, but not all earthquakes, 282 

is a form of special pleading (changing the rules for specific cases with no set guidelines) 283 

and this makes it difficult to do a proper statistical test because one would have to 284 

consider the special pleading for each of the mainshocks in the synthetic data sets.  The 285 

one exception we make is for our DMR tests (see below), for which we do go back to 286 

1910 for the Kern County earthquake.  However, the DMR tests are done to demonstrate 287 

the power of data-fitting and we do not make statistical tests of these results.   288 
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 289 

5. Decelerating Moment Release and the Power of Data-fitting 290 

The value of C is highly sensitive to the search radius (Figure 3).  Increasing the radius 291 

adds spatial clusters of earthquakes that may contribute to or counteract AMR, and C 292 

changes accordingly. C is also sensitive to the catalog starting time.  Temporal clusters of 293 

events near the end of the catalog contribute to AMR, while those near the beginning 294 

counteract it.  Because C is unstable with respect to search radius, we hypothesize that 295 

low C may be found in datasets with no true AMR, and therefore apparent AMR may be 296 

the result of data-fitting. 297 

The power of data-fitting to find any desired seismicity pattern can be demonstrated 298 

by searching for a different pattern, for example a deceleration of seismicity rate, prior to 299 

the same mainshocks that are cited as being preceded by AMR. If significant decelerating 300 

moment release (DMR) is found before many of the mainshocks cited as examples of 301 

AMR, then the most plausible explanation is that both patterns are the result of data-302 

fitting. 303 

Searches for DMR require just two changes to the use of equation (2).  First the 304 

restriction m  1 is applied to produce curves that are concave downward.  Second, A is 305 

left a free parameter because fixing it to the cumulative Benioff strain, including that of 306 

the mainshock, would destroy any apparent deceleration.  We then use the same 307 

parameter C to measure the strength of the DMR. 308 

To find DMR we first study the eight M 6.5 California mainshocks for which 309 

Bowman et al. [1998] reported AMR, and we use the same earthquake catalog to search 310 

for these seismicity trends.  DMR is found before all 8 mainshocks, and in each case the 311 
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DMR is significant according to Bowman et al. [1998]’s criteria of C<0.7 (Figure 4).  312 

The optimal radii and time windows are similar to those for AMR, so AMR and DMR are 313 

not characteristic of different length or time scales (Table 1). 314 

We next search for both AMR and DMR before all M 6 mainshocks that occurred 315 

after 1950 in the ANSS catalog for California and Nevada.  Figure 5 shows the 316 

cumulative distribution of the observed curvature parameter C for the optimal AMR and 317 

DMR before each mainshock.  Although the C value distributions for AMR and DMR are 318 

not directly comparable statistically because of the difference in whether A is fixed or 319 

treated as a free parameter, it is clear that there are nearly as many mainshocks with well-320 

resolved DMR signals (low C) as with well-resolved AMR signals.  Many mainshocks 321 

exhibit both AMR and DMR for different data-selection choices. 322 

Another example of data-fitting is for the December 2004 M9.3 Sumatra earthquake.  323 

Two studies [Jiang and Wu, 2005; Mignan et al., 2006b] report significant AMR prior to 324 

this event beginning around 1980.  Following Mignan et al. [2006b], we use shallow 325 

events (depth 40 km) from the ANSS global earthquake catalog from 1965-2004 326 

(www.ncedc.org/anss, last accessed on February 16, 2007).  We consider a catalog 327 

containing all events M 4.5, and, because the M 4.5 catalog is clearly not complete (see 328 

Mignan et al. [2006b] Figure A1), we also consider a catalog containing all M 5.5 329 

events.  While Mignan et al. [2006b] search for AMR in regions based on Coulomb stress 330 

modeling, we search for AMR and DMR using circular regions.  We show in Section 6.3 331 

that the difference in region shape does not make a significant difference in the 332 

identification of AMR for California and Nevada. 333 
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Both significant AMR and significant DMR (C<0.7) are found in the pre-Sumatra 334 

earthquake catalogs (Figure 6).  The optimal AMR curve for the M 4.5 catalog (Figure 335 

6(a)) is similar to the curve of Mignan et al. [2006b], verifying that the difference in 336 

region shape is not greatly important. The C-value for the M 4.5 DMR curve is 337 

somewhat higher than for the M 4.5 AMR curve, which is probably the result of the 338 

incompleteness of the M 4.5 catalog.  An incomplete catalog will become more complete 339 

through time, producing an artifact of apparently increasing seismicity rate.  For the more 340 

complete M 5.5 catalog, the C-values for the optimal AMR and DMR curves are more 341 

similar. The optimal AMR curves begin around 1980, while the optimal DMR curves 342 

begin around 2000.  Much of the data-fitting in the Sumatra case depends on two M7.9 343 

events occurring in June 2000 (one in Sumatra, one in the Indian Ocean.)  If these events 344 

occur near the end of the selected time window, apparent AMR is observed, while if 345 

these events occur near the beginning, apparent DMR is observed.  Note that the AMR 346 

and DMR curves contain a similarly large number of events, so no argument can be made 347 

that the AMR curve is more real based on the large number of events that define it. 348 

There is no significance to the longer time-scale of apparent AMR than DMR for the 349 

Sumatra example.  For the eight California events studied by Bowman et al. [1998], the 350 

optimal time-scales and length-scale for DMR overlap with those for AMR (Table 1.)  351 

One example of an earthquake with a longer time-scale of apparent DMR is the 1971 San 352 

Fernando earthquake.  Optimal DMR is found starting in 1950 (Figure 4, Table 1) while 353 

optimal AMR starts in 1967 (see Figure 6 of Bowman et al. [1998])  In this case, the 354 

data-fitting involves a period of low seismicity rate during 1956-1968.  If the selected 355 

window begins during this time, apparent AMR is observed, while if this time occurs 356 



  18 

later in the time window, apparent DMR is observed.  This example and the Sumatra 357 

example demonstrate how fluctuations in the background seismicity rate can be selected 358 

to produce the desired seismicity pattern. 359 

None of these examples should be taken to imply that DMR is a real precursory 360 

process.  Instead, these examples demonstrate that two contrary signals, accelerating and 361 

decelerating seismicity, can often be found in the same dataset.  It seems implausible that 362 

true acceleration and deceleration are simultaneously present, strongly suggesting that 363 

both signals are found as a result of data-fitting. 364 

 365 

6. Synthetic Seismicity Tests 366 

We further consider the possibility that AMR is not a real physical process, and that it 367 

is found before many mainshocks because the time and area windows are adjusted to 368 

optimize for acceleration.  If this explanation is correct, AMR should be found at a 369 

similar rate in real catalogs and in synthetic catalogs in which no real AMR is present.  370 

We perform this test by generating suites of synthetic catalogs and searching them for 371 

AMR in the same way as the real catalogs.  The null hypothesis is that the synthetic 372 

catalogs contain as much AMR as the real catalog.  A rejection of this null hypothesis 373 

would support AMR as a real physical phenomenon.  If the null hypothesis cannot be 374 

rejected, this would support our theory that AMR is an artifact of data fitting.  As 375 

discussed in the Methods section, we use the 95% confidence level as the test of whether 376 

or not the null hypothesis can be rejected. 377 

 378 

6.1  Synthetic Seismicity Catalogs 379 
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 380 

We generate four types of synthetic test catalogs using different approaches. These 381 

catalogs range from purely random earthquake times and locations to more complex 382 

catalogs based on two ETAS (epidemic-type aftershock sequence) models [e.g. Ogata, 383 

1988] that include both realistic spatiotemporal earthquake clustering and a realistic 384 

spatial distribution of background seismicity.  Each synthetic catalog is designed to 385 

contain approximately the same number of events as the real catalog, and to span the 386 

same spatial area and duration. 387 

 388 

6.1.1  Uniform Random Seismicity Catalogs 389 

 390 

The first type of synthetic catalog is the simplest, consisting of uniform random 391 

seismicity.  The number of events in each synthetic catalog matches the number in the 392 

real ANSS CA-NV catalog.  The synthetic event locations and times are randomly 393 

selected from a uniform distribution over the spatial and temporal range of the real ANSS 394 

catalog.  The magnitudes are selected randomly, without replacement, from the 395 

distributions of magnitudes in the real catalog.  We generate 10 simulated catalogs in this 396 

way, for a grand total of 420 mainshocks.  This method produces synthetic seismicity that 397 

matches the number of earthquakes and the magnitude distribution from the real catalog 398 

but does not produce realistic spatial or temporal clustering behavior (Figure 7c and d). 399 

 400 

6.1.2  Random Times/Real Locations Catalogs 401 

 402 
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The next type of synthetic catalog more resembles real seismicity in that it contains the 403 

same spatial clustering as the real data.  The real earthquake locations are used, while the 404 

synthetic earthquake times and magnitudes are assigned randomly as before.  Again we 405 

generate 10 simulated catalogs in this way, containing a total of 420 mainshocks.  This 406 

method produces synthetic seismicity that matches the number of earthquakes, magnitude 407 

distribution, and spatial pattern of the real catalog but does not include realistic temporal 408 

clustering (Figure 7e and f). 409 

 410 

6.1.3  ETAS Synthetic Seismicity Catalogs 411 

 412 

The third and fourth sets of synthetic catalogs consist of ETAS simulations [e.g. Ogata, 413 

1988] that include realistic spatiotemporal earthquake clustering (Figure 7g-j).  The times 414 

of the background earthquakes are chosen randomly, using a spatially-varying (on a 0.5° 415 

grid) background seismicity rate found from the real ANSS catalog using the technique 416 

of Hainzl et al. [2006]. For the magnitude distribution for the third set of simulations we 417 

assign the magnitude of each earthquake randomly from the Gutenberg-Richter 418 

distribution with a b value of 1.0, following Felzer et al. [2002].  For the fourth set of 419 

simulations we choose magnitudes randomly from the magnitudes listed in the ANSS 420 

catalog.  Note that the total number of earthquakes in each ETAS simulation and in the 421 

ANSS catalog will not necessarily be the same, and thus some magnitudes will be 422 

randomly omitted or repeated. 423 

Our synthetic ETAS catalogs do not exactly match the number of earthquakes in the 424 

original catalogs, or the sharpness of the fault system, but do produce realistic spatial and 425 
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temporal clustering. For the purposes of this study, we believe that these catalogs are 426 

adequate.  Further details on the ETAS simulations are presented in the Appendix. 427 

 428 

6.2. Synthetic Seismicity Results 429 

The cumulative density functions (CDF) of the C-values for the real data and the 430 

synthetic catalogs are shown in Figure 8.  The CDF curves, with the 95% confidence 431 

regions estimated using a bootstrap approach, provide a visual comparison between the 432 

results from the real data and the synthetic catalogs while the statistical significance 433 

estimated using a K-S test provides an objective measure of whether or not the null 434 

hypothesis (that the real catalog does not produce more AMR than the simulated 435 

catalogs) can be rejected. 436 

It is clear that increasing Nmin has only a small effect on the results.  Higher Nmin does 437 

increase the statistical significance of AMR but in no case does the difference between 438 

Nmin = 4 and Nmin = 10 change whether or not the null hypothesis can be rejected.  For 439 

most mainshocks, the number of events in the optimal sequence, N, is greater than Nmin  440 

(Figure 9(a).)  Low values of C arise in sequences with a range of values of N, and hence 441 

are not an artifact of small datasets (Figure 9(a).) 442 

However, whether or not we reject the null hypothesis is dependent on whether or not 443 

the synthetic catalogs contain spatiotemporal earthquake clustering.  The CDFs for the 444 

two types of synthetic catalogs without spatiotemporal clustering, the uniform random 445 

seismicity and the randomized earthquake catalog, show significantly less AMR than the 446 

CDF for the real data at above 95% confidence.  For the two ETAS simulations, which 447 
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contain realistic spatiotemporal clustering, we cannot reject at 95% confidence the null 448 

hypothesis that the CDFs for the synthetics contain as much AMR as the CDF for the real 449 

data.   450 

The cumulative distribution curves for the real and ETAS catalogs exhibit a steep 451 

slope starting at C 0, indicating that both datasets include mainshocks preceded by 452 

distinct and well-resolved accelerations with small C.  The CDFs for the synthetic 453 

datasets without spatiotemporal clustering have a shallow slope for very small values of 454 

C and become steep only for larger values of C, indicating that few of the non-ETAS 455 

synthetic mainshocks are associated with AMR with very small (less than ~0.2) C values. 456 

The rate and strength of AMR observed in real and ETAS seismicity catalogs is the 457 

same, despite the fact that no real AMR exists in the ETAS catalogs. The spatiotemporal 458 

seismicity clustering contributes to the apparent AMR, because each earthquake may 459 

become a foreshock by directly or indirectly triggering a mainshock.  When the rate of 460 

seismicity is higher than usual, the probability of a mainshock being triggered is also 461 

higher and this may look like AMR.  We conclude that AMR is observed before many 462 

mainshocks both because of the clustering process and because a search is done for the 463 

spatial and temporal extent of the region that optimizes the AMR signal. 464 

 465 

 466 

7. Scaling Relationships 467 

The size of the region over which AMR is observed has been reported to scale with 468 

the magnitude of the eventual mainshock [e.g. Bowman et al., 1998].  This apparent 469 

scaling is often used as an argument in support of AMR as the result of a real physical 470 
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process, since a critical region of increased loading would reasonably scale with the size 471 

of the eventual rupture.  The time period over which AMR is observed also appears to 472 

scale with mainshock magnitude in their results. 473 

We first investigate the robustness of the proposed scaling relationship between 474 

mainshock magnitude and the size of the region exhibiting AMR.  Bowman et al. [1998] 475 

proposed a linear scaling relation between the log of the optimal region size and 476 

mainshock magnitude based on 8 M 6.5 California mainshocks, and 4 additional 477 

earthquakes that extend the magnitude range.  For only 2 of the 8 California events, 478 

however, does the confidence region for the optimal radius intersect the scaling 479 

relationship curve (their Figure 7). We test for AMR for the same 8 California 480 

mainshocks, using the radius scaling relation given by Bowman et al. [1998] and a 481 

duration scaling relationship found from a linear fit of the log of the optimal duration 482 

reported by Bowman et al. [1998] versus event magnitude (Figure 10b).  Using catalogs 483 

with spatial and temporal windows defined by these scaling relations, we find no 484 

significant AMR (C<0.7) for the 8 California mainshocks.   485 

These results imply that the proposed scaling cannot be strictly applied, and in 486 

particular cannot be used predictively to estimate the spatial or temporal region in which 487 

AMR is expected to occur prior to a given mainshock or anticipated future earthquake.  488 

The scaling relation isn’t robust because apparent AMR is very sensitive to the radius and 489 

duration of the catalog.  The value of C can change dramatically over a small increase in 490 

region size (Figure 3), as additional earthquake clusters are captured in the region, 491 

changing the shape of the cumulative Benioff strain curve.  Thus, while the optimal radii 492 

and durations found by Bowman et al. [1998] roughly scale with magnitude, the 493 
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difference between the optimal values and the best-fit curve translates to a significant 494 

difference in C-value.  Therefore, the scaling relationships cannot be used to predict the 495 

data-selection parameters and avoid the problems of data-fitting. 496 

The apparent general increase in optimal region size (Figure 10a) and duration (Figure 497 

10b) could still be used as an argument for a physical basis for AMR, even though 498 

particular proposed scaling relationships don’t strictly hold.  We test whether this 499 

apparent scaling is an artifact of data selection.  Bowman et al. [1998] search for AMR 500 

before each mainshock using a catalog with a minimum magnitude cutoff two magnitude 501 

units below the mainshock magnitude.  Using a minimum magnitude that scales with the 502 

mainshock magnitude can affect the apparent optimal region size and AMR duration.  For 503 

a larger mainshock, because of the relative infrequency of larger events, there will be a 504 

lower spatial and temporal density of events within two magnitude units, and hence a 505 

larger area and/or a longer time period may be needed to accumulate enough events to 506 

observe significant AMR.  An apparent scaling of optimal region and duration with 507 

magnitude could follow. 508 

We examine the dependence of the apparent scaling on minimum magnitude using the 509 

same 8 California mainshocks studied by Bowman et al. [1998].  First we find scaling 510 

relationships using the optimal radii and durations reported by Bowman et al. [1998].  511 

Because we do not include their additional 4 earthquakes (which would introduce more 512 

data-selection issues concerning how these 4 events were chosen), we obtain a somewhat 513 

different scaling relationship for radius versus magnitude, but still with a positive slope 514 

(Figure 10a.)   We also find a positive slope for the optimal duration versus magnitude 515 

(Figure 10b).  For these 8 events, optimal region size and duration weakly scale with 516 
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mainshock magnitude, when the optimization is performed on catalogs with a minimum 517 

magnitude that scales with mainshock magnitude. 518 

Next we find the optimal radii and durations for the 8 mainshocks using catalogs with 519 

a fixed minimum magnitude of M 4.0.  In this case, we find no positive correlation of 520 

optimal region size or duration with mainshock magnitude.  The fits to optimal radius 521 

versus magnitude (Figure 10c) and optimal duration versus magnitude (Figure 10d) are 522 

both essentially flat, with very small negative slopes. Similar results are obtained for 523 

minimum magnitudes ranging from M3.0 (probably below the magnitude of 524 

completeness) to M4.5 (within 2 magnitude units of the smallest mainshocks.)  There is 525 

no scaling of optimal region size or duration with mainshock magnitude when the 526 

optimization is performed on catalogs with a fixed minimum magnitude.  Therefore, the 527 

apparent radius and duration scaling in this dataset is an artifact of using a minimum 528 

magnitude that scales with mainshock magnitude, and should not be interpreted in terms 529 

of physical processes. 530 

 531 

8. Tests of Recent Changes in AMR Detection Efforts 532 

In the years since Bowman et al. [1998] was published, several authors have proposed 533 

methodological changes to make the search for AMR more effective.   534 

 535 

8.1. Coulomb Prestress Regions 536 

One important change is that while Bowman et al. [1998] searched for AMR within 537 

circular regions around the large earthquakes, Bowman and King [2001] used search 538 

regions based on the Coulomb stress transfer pattern from a backslip model of the 539 
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mainshock, based on the hypothesis that AMR would occur in the regions that are being 540 

loaded by the deformation that loads the mainshock fault plane.  This method was also 541 

advocated by King and Bowman [2003], Mignan et al. [2006a], and Mignan et al. 542 

[2006b].  543 

The conceptual model is that the eventual mainshock fault patch remains locked, while 544 

the rest of the fault slips aseismically at depth and in earthquakes on either side of the 545 

locked patch.  This is equivalent to modeling back-slip on the mainshock plane [e.g. 546 

Savage and Burford, 1973].  Only events in areas of positive Coulomb stress change 547 

( CS) in the build up to the mainshock are considered when searching for AMR, down to 548 

a minimum stress value CSmin, which is chosen to optimize AMR.  We test whether 549 

using a region based on this hypothetical model of stress loading improves the 550 

performance of the AMR model. 551 

We model prestress for nine M 6.5 mainshocks in the CA-NV ANSS catalog, using 552 

simple mainshock slip models with uniform slip on a single fault plane, following 553 

Bowman and King [2001]. We use published slip models for the San Fernando [Heaton 554 

and Helmberger, 1979], Superstition Hills [Wald et al., 1990], Loma Prieta [Wald et al., 555 

1991], Landers [Wald and Heaton, 1994], Northridge [Wald et al., 1996], Hector Mine 556 

[Ji et al., 2002], and San Simeon [Ji et al., 2004] earthquakes.  We simplified the models 557 

by creating a single fault plane of average strike and dip, and assigning uniform slip to 558 

this plane to match the mainshock moment.  To model the backslip we model slip in the 559 

opposite direction from the mainshock slip model.  For the Fairview Peak mainshock, we 560 

use the surface rupture from Caskey et al. [1996] to determine the location, strike, and 561 

length of the rupture, and the moment tensor of Doser [1986] to constrain the moment, 562 
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the fault dip and the rake.  For the Borrego Mountain earthquake we use the surface 563 

rupture reported by Allen et al. [Allen et al., 1968] and the moment tensor of Ebel and 564 

Helmberger [1982].  Because our tests require a minimum of 10 earthquakes before the 565 

mainshock in both the full and positive prestress regions (Nmin=10), we do not use the 566 

Kern County, Rainbow Mountain, Stillwater, and Dixie Valley earthquakes, all of which 567 

occurred early in the catalog.   568 

We compute the static stress change tensor due to each mainshock backslip 569 

dislocation, assuming an elastic half-space, using the computer program DLC (R. W. 570 

Simpson, personal communication) based on the subroutines of Okada [1992].  We find 571 

CS on optimally oriented planes at the hypocenter of each earthquake in the ANSS 572 

catalog occurring prior to the mainshock.  The optimally oriented planes are found 573 

assuming that the maximum compressive stress axis of the background stress field is at 574 

45° to the fault plane and that the differential stress is 10 bars, following similar 575 

assumptions made by Bowman and King [2001].   We also assume an effective 576 

coefficient of friction μ=0.4. 577 

For each of the nine M 6.5 mainshocks of the CA-NV ANSS catalog modeled above, 578 

we first search for AMR and find the lowest value of C using only events inside the 579 

positive prestress region with CS CSmin. As a control, we then separately determine 580 

the lowest value of C using earthquakes in both the positive and negative prestress zones 581 

by selecting all events with | CS| CSmin.  We find the value of CSmin that optimizes 582 

the AMR by stepping through 100 different stress values for CSmin between 0.0001 583 

bars and the largest positive stress change modeled for the earthquake.  As in our other 584 

tests we find the optimal beginning time by stepping in 1-year increments. If AMR is a 585 
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real physical process that occurs primarily in the positive prestress zone, then the 586 

earthquakes in the positive stress zones should produce a significantly lower C value than 587 

the combined shadowed and positive stressed earthquakes.   On the other hand, if AMR is 588 

unrelated to prestress, for instance if AMR is an artifact of data fitting, the two C values 589 

will be comparable. 590 

We find that using the positive prestress region does not significantly improve the 591 

performance of the AMR model.  Limiting the data set to events with positive prestress 592 

produced a lower value of C for only three of the mainshocks (Table 2.)  For 5 of the 593 

mainshocks, using all of the earthquakes produced a better result, and there was one tie.  594 

Limiting the search for AMR to the positive prestress areas therefore does not 595 

significantly improve the chances of finding AMR. 596 

 597 

8.2. Fixed Curvature Parameter 598 

The approach of Mignan et al. [2006a] also differs from our work and Bowman et al. 599 

[1998] in two important aspects.  First, while we followed Bowman et al. [1998] and 600 

considered the exponent m in equation 2 as a free parameter allowed to range between 0 601 

and 0.8, Mignan et al. [2006a] fixed it to m = 0.3 based on Bufe and Varnes [1993].  602 

Constraining the exponent m reduces the power of data-fitting when fitting the power-law 603 

to the data and very low C-values will only be found when the data exhibit power-law 604 

type behavior with m  0.3.  This is equally true for the real data and the synthetic 605 

catalogs, thus this modification would improve the statistical significance of the AMR 606 

hypothesis if the m-exponents in the real data are actually about 0.3.   607 
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If the true value of m  0.3, we would expect to see the values of m that optimize 608 

AMR for the real data to cluster around 0.3.  However, we do not find that m tends to be 609 

about 0.3 in the real data, but rather spans the range of values (Figure 9(b).)  It could be 610 

argued that a larger catalog could more precisely determine m, but we find a wide range 611 

of optimal m even for data sets with large N (Figure 9(c).)  It is also interesting that the 612 

lowest C-values correspond to very low m (Figure 9(d).)  This may be an artifact of the 613 

definition of C, because when m is very low the power-law is the most different from a 614 

line. 615 

When we constrain m to 0.3 and re-analyze the real data and the ETAS simulations, 616 

very low C-values become more rare in both the real data and the synthetics.  Setting 617 

m=0.3 does not improve the statistical significance of the AMR hypothesis (Figure 11.)  618 

For both Nmin=4 and Nmin=10, the null hypothesis, that the synthetic data contains as 619 

much AMR as the real data, cannot be rejected with 95% confidence.  Because our 620 

results show that the m-values found in the real data do not cluster near 0.3 and 621 

constraining m to 0.3 does not improve the statistical significance of the AMR signal, our 622 

analysis of a larger data set than Bufe and Varnes [1993] rejects their hypothesis that m is 623 

about 0.3. 624 

 625 

8.3. Declustering 626 

Second, Mignan et al. [2006a] declustered their earthquake catalogs (removed 627 

aftershocks) before testing for AMR.  The theory behind this change was that aftershocks 628 

are not necessarily part of the AMR acceleration and so may detract from detection of the 629 

underlying AMR signal.  To test whether declustering improves the performance of the 630 
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AMR model we used the well known algorithm of Gardner and Knopoff  [1974] to 631 

decluster both the real ANSS catalog and ten synthetic ETAS catalogs, where the 632 

synthetic catalogs were produced with magnitudes taken from the Gutenberg-Richter 633 

distribution.  We then performed new optimizations for AMR, solving for a new C value 634 

for each mainshock that survived the declustering process.  As could be expected from 635 

our earlier analysis, declustering caused the overall incidence of low C values to 636 

decrease.  Furthermore the amount of decrease was similar in the CDFs for the real and 637 

synthetic declustered catalogs, such that a K-S test using the CDFs based on the 638 

declustered data cannot reject the null hypothesis that the C-values of the synthetic data 639 

are as low as the C-values of the real data (Figure 12).  Therefore we find no evidence of 640 

the existence of real AMR being concealed by aftershock sequences. 641 

 642 

9. Discussion  643 

Determining free parameters from data is often a necessary part of hypothesis 644 

development.  Given the hypothesis that seismicity accelerates before large earthquakes, 645 

it may be reasonable to determine the region and time period over which the acceleration 646 

takes place from the data.  In AMR studies this is done when the size of the region and 647 

length of the time period are determined by minimizing the C-value for each earthquake. 648 

This practice, frequently referred to as data-fitting, carries the danger of identifying 649 

patterns that are not real, but are created by choosing the free parameters so that the 650 

selected data demonstrates the hypothesized pattern.  This danger is particularly high 651 

when the results are unstable with respect to small variations in the free parameters.  652 

Given that the C-value is an unstable function of the selection radius (Figure 3) and time 653 
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period, the dangers of data-fitting with respect to AMR must be carefully considered.  654 

This instability also implies that the apparent AMR signals are not the result of a broad 655 

regional process but are created by optimally selecting a series of spatial clusters that 656 

create an apparent acceleration. The dangers of data-fitting are also illustrated by the fact 657 

that contrary patterns of accelerating and decelerating moment release can be found in the 658 

same, real, datasets by choosing selected radii or time periods. 659 

One way to escape the dangers of data-fitting would be to determine these free 660 

parameters by some other means. Bowman et al. [1998] proposed empirical scaling 661 

relationships between the magnitude of the impending mainshock and the size of the 662 

search region.  However, we have demonstrated that this empirical relationship cannot be 663 

used to avoid data-fitting because when it is used to determine the data-selection area 664 

there is no AMR signal.  Furthermore, we have demonstrated that this proposed scaling 665 

relationship is due to the practice of using a minimum magnitude that scales with the 666 

mainshock magnitude.  Thus the proposed scaling relationships are a statistical artifact of 667 

the design of the algorithm and are not evidence of a physical process. 668 

Given the danger that spurious patterns may result from data-fitting, it is critical that 669 

we test the statistical significance of AMR.  We carry out these statistical tests by 670 

creating simulated seismicity catalogs, subjecting these simulated catalogs to exactly the 671 

same analysis as was applied to the real data, and then determining the probability that 672 

the distributions of C-values for the real data are lower than the C-values for the synthetic 673 

catalogs.  In this study, we carry out this process using four types of seismicity 674 

simulations that each serve to illustrate the important elements of these tests. 675 
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The first two seismicity simulations are very simplistic and do not include temporal 676 

clustering.  The first simulation method creates seismicity that has a random, uniform 677 

distribution in time and space and magnitudes are drawn from the real catalog with the 678 

rate set to match the rate of earthquakes in the real data.  The second simulation differs 679 

only in that it uses the locations from the real catalog and thus preserves the spatial 680 

characteristics of real data.  While many cases of AMR are found in these random 681 

catalogs, more are found in the real data and the K-S test rejects the null hypothesis that 682 

the synthetic catalogs contain as much AMR as the real catalog.  Thus, using these simple 683 

random catalogs would lead to accepting AMR as a real process.  Our second two 684 

seismicity simulations do include temporal clustering, however, in the form of 685 

aftershocks modeled with an ETAS simulator.  When this clustering is included the 686 

amount of AMR in the real catalog is not statistically significantly greater than the 687 

amount of AMR in the synthetic catalogs. 688 

Important lessons can be drawn from a comparison between the results of our tests 689 

using seismicity simulations with the tests done in Mignan et al. [2006a].  Their 690 

simulations produce distributions of C-values where low C-values are rare compared to 691 

both the real data and to our ETAS simulations.  This is because their simulation methods 692 

are most similar to our uniform random synthetic seismicity catalogs, which have events 693 

uniformly distributed in space and time.  But there are also important differences between 694 

their methods and our simple synthetic tests.  For instance, our synthetics more 695 

realistically represent a full seismicity catalog that includes multiple mainshocks, while 696 

their catalogs consider individual mainshocks in isolation.  In their simulations, a cluster 697 

of seismicity may only contribute to an AMR signal preceeding one earthquake.  In our 698 
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synthetic catalogs, as in real data, a cluster of seismicity exhibiting a rate increase may 699 

contribute to the apparent AMR of multiple mainshocks, making apparent AMR more 700 

common.  Mignan et al. [2006a] attempt to compensate for the lack of clustering in their 701 

simulations by declustering their data.  However, declustering algorithms are imperfect 702 

and so are unlikely to produce a truly uniform catalog in both space and time.  Also, the 703 

number of earthquakes in their simulations is set to an artificial number in a non-704 

dimensional space rather than basing the simulations on the number of earthquakes in the 705 

actual catalog with the same spatial size and temporal duration as the real data.  Thus the 706 

approach Mignan et al. [2006a] does not generate a realistic simulation of the actual data 707 

analysis process and this is one of the deficiencies that leads them to underestimate the 708 

rate at which low C-values will be found by random chance. 709 

Bowman et al. [1998] also test the AMR they find against AMR in synthetic catalogs 710 

but like Mignan et al. [2006a] their synthetics have no spatiotemporal clustering and 711 

contain only one synthetic mainshock per catalog.  Most critically, however, Bowman et 712 

al. [1998] also evaluate their synthetics differently than the real data; whereas the time 713 

windows are apparently optimized for the real mainshocks and the minimum magnitude 714 

is sometimes adjusted, a uniform time window and magnitude range are used for the 715 

synthetics.  As a result the C values for the synthetics produce a very different CDF than 716 

is found in either this study or in Mignan et al. [2006a].   717 

The problems associated with not acknowledging that earthquakes may be part of the 718 

AMR for multiple mainshocks in the real catalog is also compounded in Bowman et al. 719 

[1998].  From their simulations, Bowman et al. [1998]  find that the probability of 720 

obtaining a C-value below 0.7 is 0.5 and then calculate the probability of finding 8 C-721 
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values below 0.7 by assuming that the C-values are independent.  This makes the joint 722 

probability of obtaining 8 C-values below 0.7 equal to 0.5
8
 and makes their result for the 723 

real data appear to be significant at over the 99% confidence level. In fact, because the 724 

seismicity catalog is shared between all of the earthquakes, if one C-value less than 0.7 is 725 

found then the chances are very good that other like values will be found as well.  Thus, 726 

the C-values in the real data are not independent and their approach overestimates the 727 

statistical significance of the signal. 728 

The next two simulation methods we use include realistic spatiotemporal clustering 729 

and the general spatial characteristics of the real data.  The difference between the two 730 

simulations is that one uses a Gutenberg-Richter distribution to produce the magnitudes 731 

while the other uses an empirical distribution drawn from the real data.  The simulation 732 

methods with clustering, as compared to those without clustering, produce distributions 733 

of C-values that are even more similar to the one from the real data.  Thus, when 734 

clustering is included the K-S test rejects the AMR hypothesis.  The effect of including 735 

clustering in the test is similar to the conclusions of Michael [1997] who studied the 736 

effect of seismicity clustering on a proposed electromagnetic precursor.  This is because 737 

clustering, which exists in real data, can help artificial data-fitting find unusual behavior.  738 

Therefore it is always important to include the effects of clustering in prediction tests.  739 

The synthetic catalogs of Bowman et al. [1998] and Mignan et al. [2006a]  do not include 740 

spatiotemporal clustering, leading to poor simulation of C-values in their synthetic tests.  741 

The fact that only our ETAS simulated catalogs matched the amount and distribution of 742 

AMR seen in the real catalog may also indicate, perhaps not too surprisingly, that the 743 
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sudden rate increases occurring in aftershock and foreshock sequences of all sizes may 744 

accentuate apparent accelerations. 745 

We have found that spatio-temporal clustering in the form of aftershock sequences 746 

significantly increases the amount of apparent AMR that is found in a data set.  One or 747 

several large aftershock sequences might lead to both a stronger apparent AMR signal 748 

and an increased chance of a large earthquake simply because larger earthquakes are 749 

more likely to occur during times of higher seismicity rates.  This is because the higher 750 

the earthquake rate, the higher the probability of at least one large earthquake.  Thus the 751 

existence of clustering makes AMR appear to be predictive.  However, if the physical 752 

factor producing the apparent acceleration is aftershock clustering, forecasting of the 753 

probability of large earthquakes can be accomplished by existing applications of 754 

aftershock statistics via an ETAS [Helmstetter et al., 2006] or STEP [Gerstenberger et 755 

al., 2005] type model. 756 

We have focused on the AMR hypothesis as originally proposed in Bowman et al. 757 

[1998] rather than in one of many later studies that have proposed modifications in the 758 

hypothesis.  One major change came when Bowman and King [2001] proposed using 759 

data selection regions based on Coloumb stress changes rather than circles around the 760 

impending mainshock.  By comparing the distribution of C-values found for the circles 761 

and stress patterns in the real data, we show that this modification does not result in an 762 

improved AMR signal.  763 

This result is in contrast to those of Mignan et al. [2006a], who report lower values of 764 

C in positive prestress regions than in negative prestress regions.  Their methodology was 765 

to determine the optimal circular area, and then to compare the positive and negative 766 
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prestress regions within the optimal circle.  However, the positive prestress region fills a 767 

larger portion of the circle than the negative prestress region (see their Figure 5), so the 768 

optimization of AMR in the circular area is weighted towards optimizing AMR in the 769 

positive prestress region, biasing the result.  For 2 of the 9 mainshocks, the negative 770 

prestress region inside the circle is so small that it contains <5 events.  Further bias is 771 

introduced by assigning a value of C=1 to the negative regions when less than 5 events 772 

are present, which guarantees that the positive pre-stress region will have a lower C 773 

value.  Our tests do not contain this bias, since we optimize the positive prestress catalog 774 

and the whole catalog independently.  775 

 There are many other proposed modifications and it is outside the scope of this study 776 

to examine each of them.  Instead, the original authors should subject their proposals to 777 

rigorous statistical tests as we did for Bowman et al. [1998].  In addition to fully 778 

simulating the analysis process and using realistic simulations of the seismicity, including 779 

clustering, these tests must include a large data set so the tests have sufficient statistical 780 

power.  Case studies of individual events, or even several events, may be useful when 781 

developing a hypothesis but are inadequate for testing purposes. 782 

 783 

10. Conclusions 784 

We have shown that apparent AMR in California and Nevada results from a 785 

combination of data-fitting and the spatiotemporal clustering of earthquakes.  We 786 

compared real data with synthetic datasets containing no underlying AMR, including 787 

ETAS simulations with realistic spatiotemporal clustering of earthquakes, and found the 788 

rate and strength of AMR in the real and ETAS catalogs to be indistinguishable.   The 789 
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high rate of observed AMR in all types of synthetic simulations demonstrates how easily 790 

apparent AMR can be found by optimizing the spatial and temporal windows.  Proposed 791 

scaling relationships, which could help avoid artifacts of data-fitting, have turned out to 792 

be both unstable and a statistical artifact of using a minimum magnitude that scales with 793 

the mainshock magnitude.   794 

The difference between the amount of AMR found in random simulations and real 795 

data on one hand, and the similar amount found in the ETAS synthetics and real data on 796 

the other, demonstrates the contribution of spatiotemporal earthquake clustering to 797 

apparent AMR.  Observed AMR therefore doesn’t imply any new earthquake behavior or 798 

physics, beyond the known occurrence of aftershocks and foreshocks.  AMR 799 

consequently has no more predictive power than clustering-based forecasts [e.g. 800 

Gerstenberger et al., 2005; Helmstetter et al., 2006; Reasenberg and Jones, 1994; 801 

Reasenberg and Jones, 1989].  The clustering-based methods are preferable because they 802 

parameterize the earthquake clustering more directly. 803 

 Our study focused on AMR as defined in Bowman et al. [1998], the foundation of 804 

most current AMR research.  We also explored several more recent modifications, 805 

including spatial regions based on stress loading, removal of aftershocks before searching 806 

for AMR, and constraining the curvature parameter (m) to 0.3, and demonstrated that 807 

these modifications do not change the results.  Other modifications to AMR are of course 808 

possible, and our study provides a model for testing any revised definition of AMR.  In 809 

particular, if there is any true signal, it should be significantly stronger in real data than in 810 

ETAS simulations 811 
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 Our results also have broader implications for the interpretation of other observed 812 

seismicity patterns.  The spatiotemporal clustering of earthquakes makes it easy to find a 813 

desired pattern of seismicity rate changes, especially when there are adjustable 814 

parameters.  For example, we found AMR in most random synthetic catalogs, and also 815 

found two conflicting patterns of acceleration and deceleration in many of the same real 816 

datasets.  Similarly, other parameterizations of activation or quiescence, or more complex 817 

patterns, may also be easily found.  818 

 Because a particular seismicity rate change pattern may be easy to find, a 819 

collection of retrospective case studies - even a large collection - doesn’t prove the 820 

significance of an observed pattern.  Statistical tests must be performed on a large dataset 821 

and/or prospective testing must be undertaken.  When testing the significance of observed 822 

seismicity patterns, the null hypothesis must include comparisons with synthetic catalogs 823 

with realistic spatiotemporal clustering. 824 

 825 

Appendix: Catalogs with Synthetic Aftershocks 826 

Producing synthetic catalogs with realistic spatiotemporal clustering is a complex task.  827 

We based our simulations on the ETAS model [e.g. Ogata, 1988] which provides realistic 828 

temporal clustering.  To produce a realistic rate and spatial distribution of seismicity we 829 

need to seed the ETAS clusters with background earthquakes and then spatially distribute 830 

the events within the clusters. 831 

The times of the background earthquakes are chosen randomly, using a spatially-832 

varying background seismicity rate found from the real ANSS catalog using the 833 

technique of Hainzl et al. [2006].  The overall spatial character is less distinct in our 834 
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synthetic ETAS catalogs than for the real data because of the 0.5°grid used to compute 835 

the spatially varying rate of background earthquakes (Figure 7a, g, and i).  A smaller grid 836 

size would produce more spatially focused seismicity patterns but at the expense of less 837 

stable estimation of the background rates. 838 

  Since it has been found that 60% of the earthquake catalog is made up of easily 839 

identifiable aftershocks [Gardner and Knopoff, 1974] the background seismicity rate 840 

should be equal to about 40% of the total seismicity rate.  The ANSS earthquake catalog 841 

that we use has an average total seismicity rate of 67.2 M 4 earthquakes per year from 842 

1950-2005, leading to an estimated background rate of 26.9 M 4 earthquakes/year.  In 843 

comparison, the Hainzl et al. [2006] method gives a total of 21.3 M 4 background 844 

earthquakes/year.  The discrepancy may be because isolated areas with higher than 845 

average aftershock/background ratios contribute heavily to the total, and because the 846 

mainshock rate estimated by the Hainzl et al. [2006] method tends to be too low for 847 

catalogs with certain aftershock parameters.  We correct for the difference by multiplying 848 

the background seismicity rates across the board by a factor of 1.26.  Grid cells with no 849 

seismicity were given a small rate of mainshocks such that in each simulation there is a 850 

50% probability that one or more earthquakes will occur in the union of these grid cells. 851 

The ETAS simulations are implemented using the inverse transform method of Felzer 852 

et al. [2002].  In these simulations each earthquake, including each aftershock, may 853 

produce its own aftershocks.  The total number of aftershocks produced per mainshock 854 

varies as ~10
bM

, where M is mainshock magnitude and b is the b parameter in the 855 

Gutenberg-Richter magnitude frequency relationship [Gutenberg and Richter, 1944].  In 856 

the temporal domain the simulated aftershocks follow the modified Omori law [Utsu, 857 
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1961] given by R(t) = K(t+c)
-p

, where t is time since the mainshock, R is the aftershock 858 

rate, c and p are constants, and K is a value that varies with the magnitudes of the 859 

mainshocks in question.  Using the results of Felzer et al. [2002] we set K=k10
b(M-Maft)

, 860 

where M is mainshock magnitude, Maft is the magnitude of the smallest aftershock 861 

counted, and k is an activity constant that is independent of magnitude. 862 

In Felzer et al. [2002] the smallest magnitude earthquake used in simulations, Mmin, 863 

was set to M 0.  Here we increase Mmin to 2.5.  This is because we are doing a large 864 

simulation – over the entire states of California and Nevada for 55 years – and increasing 865 

Mmin by a few units of magnitude saves on computational time substantially while 866 

preserving a realistic simulation.  The change in Mmin, however, also requires a 867 

corresponding change in the direct modified Omori law parameters.  Note that the direct 868 

modified Omori parameters, which are the required input for the ETAS simulation, are 869 

the parameters that describe the rate of triggering of direct aftershocks only; they do not 870 

describe the combination of direct and secondary aftershocks that make up the full 871 

aftershock sequences observed in the field.  It is very difficult to tease apart individual 872 

direct aftershock sequences from complete aftershock sequences observationally, making 873 

most direct parameters difficult to measure.  An exception is the direct p parameter.  It 874 

can be derived [Sornette and Sornette, 1999] and observed [Felzer et al., 2003] that the p 875 

parameter for complete aftershock sequences changes with time, such that the average p 876 

value over a full sequence is close to 1.0 but the p value fit to data at long times is >1 and 877 

tends to converge to the underlying direct p value.  Felzer et al. [2003] found that 878 

California p values converge to about 1.34 at long times.  Thus we set our direct p value 879 

to 1.34 and then grid search for the direct values of k and c.  In the grid search the ETAS 880 
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simulation is run with incremented parameter values, and the results are checked against 881 

the average ten and thirty day aftershock rates of M 4.7 mainshocks in California.  The 882 

best fit parameters found for Mmin=2.5 are k=0.008 days
(1-p)

 and c = 0.095 days. 883 

The ETAS simulations of Felzer et al. [2002] are performed completely in the 884 

temporal domain.  Here we add a spatial dimension by modeling each earthquake as a 885 

fault plane in 3D, with rupture dimensions taken from the relationships of Wells and 886 

Coppersmith [1994].  All faults are given a 90° dip, and 75% are randomly assigned a 887 

303° strike (clockwise from north) and 25% a 213° strike, in accordance with our 888 

estimate of major fault trends in California.  Aftershocks are placed in space such that 889 

their probability of being a distance, r, from the closest point on the fault plane of their 890 

mainshock varies as ~ r
-1.3

, in accordance with the empirical results of Felzer and 891 

Brodsky, [2006].  Aftershock depth is limited to between 0 and 20 km.  To avoid 892 

singularity at r = 0 aftershocks are not allowed closer than 1 meter from the mainshock 893 

fault plane. 894 

For the magnitude distribution for the first set of simulations we follow Felzer et al. 895 

[2002], and assign the magnitude of each earthquake randomly from the Gutenberg-896 

Richter distribution with a b value of 1.0.  For the second set of simulations, we choose 897 

magnitudes randomly from the magnitudes listed in the ANSS catalog.  Note that the 898 

total number of earthquakes in each ETAS simulation and in the ANSS catalog will not 899 

necessarily be the same because there is Poissonian randomness and positive feedback in 900 

the generation of ETAS aftershock sequences, leading to some unpredictability in total 901 

catalog size.  As a result, some magnitudes will be randomly omitted or repeated.   902 
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The ANSS catalog has some incompleteness at the smaller magnitudes and magnitude 903 

error, both of which bias the magnitude distribution upwards [Tinti and Mulargia, 1985].  904 

Thus when we use ANSS magnitudes in the ETAS simulations, the higher values cause 905 

more aftershocks to be produced, and the simulated catalogs end up somewhat more 906 

active than the real catalog.  Whereas the real catalog contains 42 M 6 mainshocks, for 907 

example, the ETAS simulations with ANSS-source magnitudes have a mean of 52, and a 908 

median of 49, M 6 earthquakes per simulated catalog.  When we perform the simulations 909 

using magnitudes from the pure G-R distribution, on the other hand, neither input nor 910 

output magnitudes are exaggerated and we end up with fewer than 42 mainshocks; a 911 

median of 36 and a mean of 38 M 6 earthquakes/simulated catalog.  The standard 912 

deviation, however, is quite large, with the smallest ANSS and G-R simulated catalogs 913 

having only 19 and 25 M 6 earthquakes, respectively, and the largest ones having 54 and 914 

58.  Thus our ETAS simulations span the number of earthquakes in the real catalog.  To 915 

insure that the variability in the total number of earthquakes per simulated catalog itself 916 

will not affect our results we perform trials with purely random catalogs, altering the total 917 

earthquake rate from 0.25 to 4 times that seen in the real ANSS catalog, and measuring 918 

the value of C for random mainshocks in each trial.  We find no correlation between C 919 

values and the total number of earthquakes in the catalog over this range.  In total for this 920 

test, we perform 20 ETAS simulations with each of the magnitude assignment methods 921 

described above.  Hence, our ETAS simulations are sufficiently accurate for the purposes 922 

of the tests done in this study. 923 

 924 

925 
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 1058 
Figures: 1059 

 1060 

Figure 1.  Example of fitting a power-law (red, dashed line) and linear function (black 1061 

line) to the data (blue circles).  For this example, which is from an ETAS simulation 1062 

of an earthquake catalog, C = 0.4. 1063 

Figure 2.  Map showing the region analyzed with earthquakes M 4 as black dots, 1064 

earthquakes M 6 as red stars, mainshocks analyzed in Bowman et al. [1998] as blue 1065 

stars, mainshocks included in our test of searching for AMR based on prestress 1066 

patterns as blue circles, and faults and state borders as lines.   1067 

Figure 3. C versus radius, for the 1992 Landers earthquake, with both 10 and 20 km 1068 

search steps, using all events M 4.  The beginning of the time interval is fixed to 1069 

1970, which produces the lowest C-value over all start times and radii.  The total 1070 

number of events, N, is also shown.   1071 

Figure 4. Optimal decelerating moment release (DMR) curves for the 8 California M 6.5 1072 

mainshocks for which Bowman et al [1998] report AMR.  C is the curvature 1073 

parameter, and R is the optimal radius. 1074 

Figure 5.  Cumulative distribution of the observed curvature parameter C for the optimal 1075 

AMR (black lines) and DMR (red dashed lines) before each M 6 mainshock in the 1076 

ANSS catalog for California and Nevada, since 1950.  The thick lines show the best 1077 

result and the thin lines show the 95% confidence region determined by bootstrap 1078 

resampling. 1079 
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Figure 6.  Optimal AMR and DMR for the December 2004 M9.1 Sumatra earthquake, 1080 

using minimum magnitudes of 4.5 and 5.5.  C is the curvature parameter, and R is the 1081 

optimal radius.  Note that the data is not complete to magnitude 4.5; but that level is 1082 

included for comparison to Mignan et al. [2006b]. 1083 

Figure 7. Maps and time series of the real data from the ANSS catalog and examples of 1084 

the four simulation methods used in the paper. The maps show earthquakes M 4 as 1085 

black dots, earthquakes M 6 as red stars, and faults and state borders as lines.  The 1086 

time series show the number of earthquakes per month with the occurrence of 1087 

earthquakes M 6 as red stars. 1088 

Figure 8. Cumulative distribution of the observed curvature parameter C for the optimal 1089 

AMR determined from the real ANSS catalog (black lines) and each of the four 1090 

simulation methods (red dashed lines) before each M 6 mainshock.  Results for both 1091 

Nmin = 4 and Nmin = 10 are shown.  The thick lines show the best result and the thin 1092 

lines show the 95% confidence region determined by bootstrap resampling.  The 1093 

confidence is the level at which we can reject the null hypothesis that the C-values for 1094 

the real data are not lower than the C-values for the synthetic data, e.g. the confidence 1095 

of accepting AMR. 1096 

Figure 9.  Parameters for optimal AMR for the real California-Nevada catalog, for Nmin=4 1097 

(red) and Nmin=10 (black).  (a) Number of events in the optimal sequence, N, versus 1098 

C.  Lines connect points for the same mainshock for different Nmin.  (b) Cumulative 1099 

distribution of the power-law exponent m.  (c) N versus m.  (d) C versus m. 1100 

Figure 10.  Optimal AMR radius and duration versus mainshock magnitude, for eight 1101 

M 6.5 California earthquakes.  Scaling relations were found by least-squares fit of 1102 
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log-radius or log-duration versus magnitude.  Correlation coefficient (r) and 1103 

significance of correlation also shown.  (a) Optimal radii from Bowman et al. [1998], 1104 

found using catalogs with minimum magnitude 2 units below mainshock magnitude.  1105 

Solid line, fit to the 8 California earthquakes; dashed line, Bowman et al.’s [1998] fit 1106 

including 4 additional mainshocks to extend the magnitude range.  (b) Optimal AMR 1107 

durations from Bowman et al. [1998].  (c) and (d)  The optimal radius and duration 1108 

for each mainshock, found using catalogs with fixed minimum magnitude of M4.0.  1109 

Optimization was performed by grid search to minimize the misfit parameter C. 1110 

Figure 11.  Cumulative distribution of the observed curvature parameter C for optimal 1111 

AMR, fixing m=0.3. Distributions are shown for the real ANSS catalog (black lines) 1112 

and the ETAS simulation methods with G-R magnitudes (red dashed lines) before 1113 

each M 6 mainshock.  Results for both Nmin = 4 and Nmin = 10 are shown.  The thick 1114 

lines show the best result and the thin lines show the 95% confidence region 1115 

determined by bootstrap resampling. The confidence is the level at which we can 1116 

reject the null hypothesis that the C-values for the real data are not lower than the C-1117 

values for the synthetic data, e.g. the confidence of accepting AMR. 1118 

Figure 12.  (a) Cumulative number of earthquakes with M 4.0 in the ANSS catalog and a 1119 

ETAS simulation using a Gutenberg-Richter distribution for the magnitudes.  Solid 1120 

lines show the complete catalogs while the dashed lines show the result of 1121 

declustering. (b) Cumulative distribution of the observed curvature parameter C for 1122 

the optimal AMR determined from the real declustered ANSS catalog (black lines) 1123 

and the declustered ETAS simulations (red dashed lines) before each M 6 1124 

mainshock.  Results for Nmin = 10 are shown.  The thick lines show the best result and 1125 
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the thin lines show the 95% confidence region determined by bootstrap resampling. 1126 

The confidence is the level at which we can reject the null hypothesis that the C-1127 

values for the real data are not lower than the C-values for the synthetic data, e.g. the 1128 

confidence of accepting AMR. 1129 

1130 
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Tables: 1130 

Table 1.  Optimal length-scale and time-scale for AMR [from Bowman et al., 1998] and 1131 

DMR (this study) for 8 California mainshocks. 1132 

 1133 

Earthquake 

mon/day/yr 

AMR 

length-

scale (km) 

[Bowmann 

et al, 

1998] 

AMR 

length-

scale 

(km) 

[this 

study] 

DMR 

length-

scale 

(km) 

AMR 

time-scale 

(yr) 

[Bowman 

et al, 

1998] 

AMR 

time-

scale (yr) 

[this 

study] 

DMR 

time-

scale (yr) 

Kern County 

7/21/1952 

325 360 720 42 42 14 

Landers 

6/28/1992 

150 40 120 22 44 49 

Loma Prieta 

10/18/1989 

200 60 300 79 79 7 

Coalinga 

5/2/1983 

175 180 140 3 4 12 

Northridge 

1/17/1994 

73 380 120 2 38 6 

San Fernando 

2/9/1971 

100 140 420 4 9 21 

Superstition 275 100 160 6 7 9 



  52 

Hills 

11/24/1987 

Borrego Mtn. 

4/9/1968 

240 280 800 10 9 15 

 1134 

Table 2.  Minimum value of C for earthquakes in the positive prestress regions, compared 1135 

to minimum C for all events.  Lowest C value for each mainshock in bold. 1136 

 1137 

Mainshock (mon/day/yr) C, Positive Prestress 

Events 

C, All Events 

Fairview Peak, 12/16/1954 0.28 0.43 

Loma Prieta, 10/18/1989 0.35 0.43 

Hector Mine, 10/16/1999 0.61 0.68 

San Fernando, 2/9/1971 0.52 0.52 

San Simeon, 12/22/2003 0.7 0.6 

Borrego Mtn, 4/9/1968 1.0 0.53 

Landers, 6/28/1992 0.42 0.32 

Northridge, 1/17/1994 0.85 0.27 

Superstition Hills, 11/24/1987 0.24 0.05 

 1138 
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Figure 1.  Example of fitting a power-law (red, dashed line) and linear function 
(black line) to the data (blue circles).  For this example, which is from an ETAS 
simulation of an earthquake catalog, C = 0.4.
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Figure 2.  Map showing the region analyzed with earthquakes M≥4 as black 
dots, earthquakes M≥6 as red stars, mainshocks analyzed in Bowman et al. 
[1998] as blue stars, mainshocks included in our test of searching for AMR 
based on prestress patterns as blue circles, and faults and state borders as lines.



Figure 3

Figure 3. C versus radius, for the 1992 Landers earthquake, with both 10 and 20 
km search steps, using all events M≥4.  The beginning of the time interval is 
fixed to 1970, which produces the lowest C-value over all start times and radii.  
The total number of events is also shown.  
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Figure 4. Optimal decelerating moment release (DMR) curves for the 8 California M≥6.5 main-
shocks for which Bowman et al. [1998] report AMR.  C is the curvature parameter, and R is the 
optimal radius.
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Figure 5.  Cumulative distribution of the observed curvature parameter C for the optimal 
AMR (black lines) and DMR (red dashed lines) before each M≥6 mainshock in the ANSS 
catalog for California and Nevada, since 1950.  The thick lines show the best result and the 
thin lines show the 95% confidence region determined by bootstrap resampling.
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Figure 6.  Optimal AMR and DMR for the December 2004 M9.1 Sumatra earthquake, using 
minimum magnitudes of 4.5 and 5.5.  C is the curvature parameter, and R is the optimal radius.  
Note that the data is not complete to magnitude 4.5; but that level is included for comparison to 
Mignan et al. [2006b].
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a) b)

c) d)

e) f )

g) h)

i) j)

Figure 7. Maps and time 
series of the real data 
from the ANSS catalog 
and examples of the 
four simulation methods 
used in the paper. The 
maps show earthquakes 
M≥4 as black dots, 
earthquakes M≥6 as red 
stars, and faults and 
state borders as lines.  
The time series show 
the number of earth-
quakes per month with 
the occurrence of 
earthquakes M≥6 as red 
stars.
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Figure 8. Cumulative distribution of the observed curvature parameter C for the optimal AMR determined 
from the real ANSS catalog (black lines) and each of the four simulation methods (red dashed lines) before 
each M≥6 mainshock.  Results for both Nmin = 4 and Nmin = 10 are shown.  The thick lines show the best 
result and the thin lines show the 95% confidence region determined by bootstrap resampling.  The confi-
dence is the level at which we can reject the null hypothesis that the C-values for the real data are not lower 
than the C-values for the synthetic data, e.g. the confidence of accepting AMR.
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Figure 9.  Parameters for optimal AMR for the real California-Nevada catalog, for Nmin=4 (red) 
and Nmin=10 (black).  (a) Number of events in the optimal sequence, N, versus C.  Lines 
connect points for the same mainshock for different Nmin.  (b) Cumulative distribution of the 
power-law exponent m.  (c) N versus m.  (d) C versus m.
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Figure 10.  Optimal AMR radius and duration versus mainshock magnitude, for eight M≥6.5 California 
earthquakes.  Scaling relations were found by least-squares fit of log-radius or log-duration versus 
magnitude.  Correlation coefficient (r) and significance of correlation also shown.  (a) Optimal radii 
from Bowman et al. [1998], found using catalogs with minimum magnitude 2 units below mainshock 
magnitude.  Solid line, fit to the 8 California earthquakes; dashed line, Bowman et al.’s [1998] fit 
including 4 additional mainshocks to extend the magnitude range.  (b) Optimal AMR durations from 
Bowman et al. [1998].  (c) and (d)  The optimal radius and duration for each mainshock, found using 
catalogs with fixed minimum magnitude of M4.0.  Optimization was performed by grid search to 
minimize the misfit parameter C.



Figure 11

Figure 11.  Cumulative distribution of the observed curvature parameter C for optimal AMR, fixing m=0.3. 
Distributions are shown for the real ANSS catalog (black lines) and the ETAS simulation methods with 
G-R magnitudes (red dashed lines) before each M≥6 mainshock.  Results for both Nmin = 4 and Nmin = 
10 are shown.  The thick lines show the best result and the thin lines show the 95% confidence region 
determined by bootstrap resampling. The confidence is the level at which we can reject the null hypothesis 
that the C-values for the real data are not lower than the C-values for the synthetic data, e.g. the confidence 
of accepting AMR.
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Figure 12.  (a) Cumulative number of earthquakes with M≥4.0 in the ANSS catalog 
and a ETAS simulation using a Gutenberg-Richter distribution for the magnitudes.  
Solid lines show the complete catalogs while the dashed lines show the result of 
declustering. (b) Cumulative distribution of the observed curvature parameter C for 
the optimal AMR determined from the real declustered ANSS catalog (black lines) 
and the declustered ETAS simulations (red dashed lines) before each M≥6 main-
shock.  Results for Nmin = 10 are shown.  The thick lines show the best result and the 
thin lines show the 95% confidence region determined by bootstrap resampling. The 
confidence is the level at which we can reject the null hypothesis that the C-values for 
the real data are not lower than the C-values for the synthetic data, e.g. the confidence 
of accepting AMR.
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